ESP8266 AT 指令 使用示例

版本 1.3

版权 © 2017

关于本手册

本文档提供 ESP8266_NONOS_SDK 的 AT 指令使用示例。文档结构如下:

章	标题	内容
第1章	概述	介绍 AT 固件及使用配置
第2章	单连接 TCP Client	示例 ESP8266 作为 TCP Client 建立单连接通信
第3章	UDP 传输	示例如何建立 UDP 通信
第4章	透传	示例如何进行透传通信
第5章	多连接 TCP Server	示例 ESP8266 作为 TCP Server 通信
第6章	问题反馈	AT 指令相关问题的反馈途径与方式。

发布说明

日期	版本	发布说明
2017.08	V1.3	文档格式更新。

文档变更通知

用户可通过乐鑫官网订阅技术文档变更的电子邮件通知。

证书下载

用户可通过乐鑫官网下载产品证书。

目录

1.	概述	1
2.	单连接	爰 TCP Client2
3.	UDP [·]	传输4
	3.1.	固定远端的 UDP 通信4
	3.2.	远端可变的 UDP 通信6
4.	透传	8
	4.1.	TCP Client 单连接透传
	4.2.	UDP 透传10
5.	多连接	倿 TCP Server12
6.	问题反	反馈14

本文档提供 ESP8266_NONOS_SDK 的 AT 指令的几种常见使用示例,更多 AT 指令说明 请参考文档 <u>ESP8266 AT Instruction Set</u>。

- 下载 ESP8266 AT Bin: <u>http://www.espressif.com/en/support/download/at</u>
 - 参考 README.md 进行烧录
- PC 串口工具, 用于向 ESP8266 发送 AT 指令
 - 波特率设置为 115200
 - AT 指令要求以新行(CR LF)结尾,串口工具应支持"新行模式"

! 注意:

• AT 指令必须为大写英文字母。

单连接 TCP Client

1. 配置 WiFi 模式
AT+CWMODE=3 // softAP+station mode
响应:
ОК
2. 连接路由器
AT+CWJAP="SSID", "password" // SSID and password of router
响应:
ОК
3. 查询 ESP8266 设备的 IP 地址
AT+CIFSR
响应:
+CIFSR:APIP,"192.168.4.1" +CIFSR:APMAC,"1a:fe:34:a5:8d:c6" +CIFSR:STAIP,"192.168.3.133" +CIFSR:STAMAC,"18:fe:34:a5:8d:c6" OK
 4. PC 与 ESP8266 设备连接同一路由器,在 PC 端使用网络调试工具,建立一个 TCP 服务器。 - 假设,PC 创建的服务器 IP 地址为 192.168.3.116,端口为 8080。 5. ESP8266 设备作为 TCP client 连接到上述服务器
 AT+CIPSTART="TCP","192,168.3.116",8080 //protocol, server IP and port

响应:

0K

6. ESP8266 设备向服务器发送数据

 $\ensuremath{\prime\prime}\xspace$ set date length which will be sent, such as 4 bytes AT+CIPSEND=4

 $\ensuremath{{\prime\prime}}$ enter the data, no CR >test

响应:

Recv 4 bytes

UDP 传输不区分 server 或者 client , 由指令 AT+CIPSTART 建立传输。

1. 配置 WiFi 模式

AT+CWMODE=3 // softAP+station mode
响应:
ОК
2. 连接路由器
AT+CWJAP="SSID","password" // SSID and password of router
响应:
ОК
3. 查询 ESP8266 设备的 IP 地址
AT+CIFSR
响应:
+CIFSR:APIP,"192.168.4.1"
+CIFSR:APMAC,"1a:fe:34:a5:8d:c6"
+CIFSR:STAIP,"192.168.101.133"
+CIFSR:STAMAC,"18:fe:34:a5:8d:c6"

- 0K
- 4. PC 与 ESP8266 设备连接同一路由器, 在 PC 端使用网络调试工具, 建立一个 UDP 传输。
 - 假设, PC 创建的 UDP 自身 IP 地址为 192.168.101.116, 端口为 8080。
- 5. 后文将基于前述步骤,介绍两种 UDP 通信的示例。

3.1. 固定远端的 UDP 通信

UDP 通信的远端固定,由 AT+CIPSTART 指令的最后一个参数设置为 0 决定。系统将分配 一个连接号给这个固定连接,UDP 通信双方不会被其他设备替代。

1. 使能多连接

AT+CIPMUX=1

响应:

ОК
2. 创建 UDP 传输。例如,分配连接号为 4,指令如下:
AT+CIPSTART=4,"UDP","192.168.101.110",8080,1112,0
响应:
4,CONNNECT
ок
□□ 说明:
示例指令中的参数说明如下:
• "192.168.101.110", 8080 为 UDP 传输的远端 IP 和端口,即前文步骤 4 中 PC 建立的 UDP 端口;
• 1112 为 ESP8266 本地的 UDP 端口,用户可自行设置,如不设置则为随机值;
 0表示当前 UDP 传输建立后, UDP 远端不会被其他设备更改;即使有其他设备通过 UDP 协议发数据到 ESP8266 UDP 端口 1112, ESP8266 的第 4 号 UDP 传输的远端也不会被替换,使用指令 "AT+CIPSEND=4, X" 发送数据,仍然是当前固定的 PC 端收到。
3. 发送数据
AT+CIPSEND=4,7 // Send 7 bytes to transmission N0.4
>UDPtest // enter the data, no CR
响应:
Recv 7 bytes
SEND OK
▲ 注意:
• 发送数据时,如果输入的字节数超过了设置长度(n):
- 系统将提示 busy,并发送数据的前 n 个字节,发送完成后响应 SEND OK。
- 超出长度的部分数据被认为是无效数据,不被接受。
4. 接收数据。 当 ESP8266 设备接收到服务器发来的数据,将提示如下信息:
+IPD,4,n:xxxxxxxxx // received n bytes, data=xxxxxxxxxx
5. 断开 UDP 传输
AT+CIPCLOSE=4
 响应:
4,CLOSED
ОК

3.2. 远端可变的 UDP 通信

当使用 AT+CIPSTART 指令创建 UDP 通信,将最后一个参数设置为 2 时,UDP 通信的远端可改变。

1. 创建 UDP 传输。

AT+CIPSTART="UDP","192.168.101.110",8080,1112,2

响应:

CONNNECT

0K

🛄 说明:

示例指令中的参数说明如下:

- "192.168.101.110", 8080 为 UDP 传输的远端 IP 和端口,即前文 PC 建立的 UDP 端口;
- 1112 为 ESP8266 本地的 UDP 端口,用户可自行设置,如不设置则为随机值;
- 2 表示当前 UDP 传输建立后, UDP 传输远端仍然会更改; UDP 传输远端会自动更改为最近一个与 ESP8266 UDP 通信的远端。
- 2. 发送数据

AT+CTPSEND-7	// Sand 7 hytas
ATTCH SEND-7	77 Schu Y bytes
>UDPtest	// enter the data, no CR

响应:

Recv 7 bytes SEND OK

<u>!</u>注意:

- 发送数据时,如果输入的字节数超过了设置长度(n):
 - 系统将提示 busy,并发送数据的前 n 个字节,发送完成后响应 SEND OK。
 - 超出长度的部分数据被认为是无效数据,不被接受。

3. 发送数据到其他指定远端。例如,发数据到 192.168.101.111,端口 1000。

AT+CIPSEND=7,"192.168.101.111",1000 // Send 7 bytes >UDPtest // enter the data, no CR 响应: Recv 7 bytes SEND OK

4. 接收数据。 当 ESP8266 设备接收到服务器发来的数据,将提示如下信息:

+IPD,n:xxxxxxxxx // received n bytes, data=xxxxxxxxxx
5. 断开 UDP 传输
AT+CIPCLOSE
响应:
CLOSED
ОК

诱传

4.

ESP8266 AT 默认仅在 TCP client 单连接或 UDP 传输模式时,支持透传。

4.1. TCP Client 单连接透传

以下为 ESP8266 作为 station 实现 TCP client 单连接透传的举例, ESP8266 作为 softAP 可同理实现透传。

1. 配置 WiFi 模式

响应:

0K

2. 连接路由器

AT+CWJAP="SSID", "password" // SSID and password of router

响应:

OK

3. 查询 ESP8266 设备的 IP 地址

AT+CIFSR

响应:

```
+CIFSR:APIP,"192.168.4.1"
+CIFSR:APMAC,"1a:fe:34:a5:8d:c6"
+CIFSR:STAIP,"192.168.3.133"
```

+CIFSR:STAMAC,"18:fe:34:a5:8d:c6"

0K

0K

- 4. PC 与 ESP8266 设备连接同一路由器, 在 PC 端使用网络调试工具, 建立一个 TCP 服务器。
 - 假设, PC 创建的服务器 IP 地址为 192.168.3.116, 端口为 8080。
- 5. ESP8266 设备作为 TCP client 连接到上述服务器

AT+CIPSTART="TCP","192.168.3.116",8080 //protocol, server IP and port 响应:

6. 使能透传模式

AT+CIPMODE=1

响应:

ОК

7. ESP8266 设备向服务器发送数据

AT+CIPSEND

> //From now on, data received from UART will be transmitted to server automatically.

<u>!</u>注意:

- 发送数据时,如果输入的字节数超过了设置长度(n):
 - 系统将提示 busy,并发送数据的前 n 个字节,发送完成后响应 SEND OK。
 - 超出长度的部分数据被认为是无效数据,不被接受。

8. 退出发送数据:

在透传发送数据过程中,若识别到单独的一包数据 "+++",则退出透传发送。

- 如果使用键盘打字输入 "+++",可能耗时太长,不被认为是连续的三个 "+",建议使 用串口工具一次性发送 "+++",并请注意不要携带空格或换行符等不可见字符。
- 之后,请至少间隔1秒,再发下一条AT指令。

! 注意:

"+++"退出透传发送数据,回到正常 AT 指令模式。此时,TCP 连接仍然是保持的,可以再发 AT+CIPSEND 指令,重新开始透传。

9. 退出透传模式

AT+CIPMODE=0 响应: ОК 10.断开 TCP 连接

AT+CIPCLOSE

响应:

CLOSED OK

4.2. UDP 透传

以下为 ESP8266 作为 softAP 实现 UDP 透传的举例, ESP8266 作为 station 可同理实现 透传。

1. 配置 WiFi 模式

AT+CWMODE=3	// softAP+station mode
响应:	,

0K

2. PC 连入 ESP8266 softAP

无线网络连接	^
ESP_781700	已连接
AC750	
ZTE_5560	
TL-WR842N	lie.

3. 在 PC 端使用网络调试工具,建立一个 UDP 传输。

- 假设, PC 创建的 UDP 自身 IP 地址为 192.168.4.2, 端口为 1001。

4. ESP8266 与 PC 对应端口建立固定对端的 UDP 传输

|--|

响应:

0K

5. 使能透传模式

AT+CIPMODE=1

响应:

ОК

6. ESP8266 设备向服务器发送数据

AT+CIPSEND

> //From now on, data received from UART will be transmitted to server automatically.

<u>!</u>注意:

- 发送数据时,如果输入的字节数超过了设置长度(n):
 - 系统将提示 busy,并发送数据的前 n 个字节,发送完成后响应 SEND OK。
 - 超出长度的部分数据被认为是无效数据,不被接受。

7. 退出发送数据:

在透传发送数据过程中,若识别到单独的一包数据 "+++",则退出透传发送。

- 如果使用键盘打字输入 "+++",可能耗时太长,不被认为是连续的三个 "+",建议使用串口工具一次性发送 "+++",并请注意不要携带空格或换行符等不可见字符。
- 之后,请至少间隔 1 秒,再发下一条 AT 指令。

<u> :</u> 注意:

"+++"退出透传发送数据,回到正常 AT 指令模式。此时,TCP 连接仍然是保持的,可以再发 AT+CIPSEND 指令,重新开始透传。

8. 退出透传模式

AT+CIPMODE=0
响应:
ОК
9. 断开 TCP 连接
AT+CIPCLOSE
响应:
CLOSED
ОК

5.

ESP8266 AT 仅支持建立一个 TCP 服务器,且必须使能多连接,即允许连接多个 TCP client。

以下为 ESP8266 作为 softAP , 建立 TCP 服务器的举例;如果是 ESP8266 作为 station,可在连接路由后,同理建立服务器。

1. 配置 WiFi 模式

AT+CWMODE=3 // so	ftAP+station mode
响应:	
ОК	
2. 使能多连接	
AT+CIPMUX=1	
响应:	
ОК	
3. 建立 TCP server	
AT+CIPSERVER=1	// default port = 333
响应:	
ОК	

4. PC 连入 ESP8266 softAP

无线网络连接	^
ESP_781700	已连接
AC750	
ZTE_5560	lite.
TL-WR842N	100

5. 在 PC 端使用网络调试工具,建立一个 TCP client, 连接 ESP8266 的 TCP server。

1 注意:

ESP8266 作为 *TCP server* 有超时机制,如果连接建立后,一段时间内无数据来往, *ESP8266 TCP server* 会 将 *TCP client* 踢掉。因此,请在 *PC TCP client* 连上 *ESP8266 TCP server* 后建立一个 2s 的循环数据发送, 用于保持连接。

6. 发送数据

```
// ID number of connection is defaulted to be 0.
AT+CIPSEND=0, 4 // send 4 bytes to connection N0.0
>test // enter the data, no CR
```

响应:

Recv 4 bytes

SEND OK

<u>!</u>注意:

- 发送数据时,如果输入的字节数超过了设置长度(n):
 - 系统将提示 busy,并发送数据的前 n 个字节,发送完成后响应 SEND OK。
 - 超出长度的部分数据被认为是无效数据,不被接受。

7. 接收数据。 当 ESP8266 设备接收到服务器发来的数据,将提示如下信息:

+IPD,0,n:xxxxxxxxx	<pre>// received n bytes,</pre>	data=xxxxxxxxxx
8. 断开 UDP 传输		
AT+CIPCLOSE=0		
响应:		
0,CLOSED		
ОК		

问题反馈

如遇到 AT 使用异常,请发邮件至乐鑫技术支持,附上如下信息:

- AT 软件的版本号,指令 AT+GMR 可获取版本信息;
- 硬件模块的信息,例如: ESP-WROOM-02;
- 详细的测试步骤说明, 例如:

```
AT+CWMODE_CUR=1
0K
AT+GMR
AT version:0.23.0.0(Apr 24 2015 21:11:01)
SDK version:1.0.1
compile time:Apr 24 2015 21:19:31
0K
AT+CIPSTAMAC_DEF="14:CF:11:22:33:05"
0K
```

• 如能提供 log 打印信息,请附上异常 log 信息,例如以下截屏:

```
ets Jan 8 2013, rst cause: 1, boot mode: (3,3)
load 0x40100000, len 26336, room 16
tail 0
chksum Øxde
load 0x3ffe8000, len 5672, room 8
tail 0
chksum 0x69
load 0x3ffe9630, len 8348, room 8
tail 4
chksum Øxcb
csum Øxcb
SDK version: 0.9.1
addr not ack when tx write cmd
mode : sta(18: fe: 34: 97: d5: 7b) + softAP(1a: fe: 34: 97: d5: 7b)
```


乐鑫 IoT 团队 *www.espressif.com*

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵 权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不 负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文 档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可 还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。蓝牙标志是 Bluetooth SIG 的注册商标。

文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声 明。

版权归 © 2017 乐鑫所有。保留所有权利。